Assignment No.-III (Unit-III)

Course: M.Sc. (Mathematics) Subject Complex Analysis Semester- 2nd Session MAY-2017 Subject Code-MMAT1-207 Date of submission 31/03/2017

- 1. Using Cauchy residue theorem: $\oint_C \frac{1-2z}{z(z-1)(z-2)} dz$, Where C is circle |Z| = 1.5.
- Obtain the Laurent's expansion for the function f(z) = 1/(z² sinh z) at the isolated singularity and solve ∫_c f(z)dz; where C is the circle |Z − 1| = 2.
 Solve ∫₀^{2π} dθ/(a + b sin θ), a > |b|
 Solve ∫₀^π 1+2cosθ/(5+4cosθ) dθ,
 Evaluate ∫₀[∞] x²/(x²+1)³ dx, a > |b|
 Using Cauchy residue theorem: ∫_c 2z-1/(z(z+1)(z+3)) dz, Where C is circle |Z| = 2.
 Find the sum of the residues of the function f(z) = sin z/(z cos z) at its poles inside the circle |Z| = 2.

Maharaja Ranjit Singh Punjab Technical University, Bathinda.

Course M.Sc.(Mathematics) Subject Complex Analysis Semester- 2nd Session MAY-2017 Subject Code-MMAT1-207 Date of submission 07/04/2017

Assignment No.-IV (Unit-IV)

- 1. Show that the transformation $w = \frac{1}{z}$ maps a circle in z plane to a circle in w-plane or to a straight line if the circle in z-plane passes through the origin.
- 2. Find the image |z 3i| = 3 of under the mapping $w = \frac{1}{2}$.
- 3. Show that under the transformation $w = \frac{z-i}{z+i}$, the real axis in z-plane is mapped into the circle

|w| = 1. what portion of the z-plane corresponds to the interior of the circle?

- 4. Show that $w = \frac{i-z}{z+i}$, maps the real axis in z-plane into the circle |w| = 1 and the half-plane y>0 into the interior of the unit circle |w| = 1 in the w-plane.
- 5. Find the fixed points and the normal form of the bilinear transformations $w = \frac{z}{z-2}$.
- 6. Find the bilinear transformation which maps the points z = 1, -i, -1 into the points w=i, 0, -i